If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-14x^2+84x+12=0
a = -14; b = 84; c = +12;
Δ = b2-4ac
Δ = 842-4·(-14)·12
Δ = 7728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7728}=\sqrt{16*483}=\sqrt{16}*\sqrt{483}=4\sqrt{483}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-4\sqrt{483}}{2*-14}=\frac{-84-4\sqrt{483}}{-28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+4\sqrt{483}}{2*-14}=\frac{-84+4\sqrt{483}}{-28} $
| 4=-7/6w-3 | | x3+7x+8=0 | | 110-w=256 | | -5/9v+3=-2 | | 2x+(x+42=90 | | 1/x-2+3=3-x/x-2 | | 10+b=35 | | 2d-1=-75 | | 3-(2x-8)=7 | | -13+39=-4x+5 | | -6=6-2u | | –10y−6=–9y | | 9x=28x | | 2*(x-3)-3*(x+1)-3=2*(2x+4) | | 40x+16=36x+4 | | x2-6x+13=5 | | 5x^2-6-8=0 | | w–3–5=–1 | | 8-4x=5x+2 | | 49=5u-9 | | 2*(x–3)-3*(x+1)-3=2*(2x+4) | | -51=-3x-6 | | -13=-2u-25 | | 5-4(n+9)=2n-3 | | M+2m=M+4 | | -6+2=4n | | 3/5*b=6 | | a+2a=100 | | 5w+2+1=18 | | 3x+17=x+13 | | 20x+8=18x+2 | | -x+1=-4x+8x-14 |